从图2四组图像中不难看出,直方图均衡化处理后,图像直方图灰度间隔被拉大了,从而有利于图像的分析与识别。但是该方法又存在一定的局限性,虽然在450 nm波段和720 nm波段图像的清晰度得到了很明显的提高,然而,在550 nm波段以及600 nm波段处理后的图像随着直方图均衡化将图像细节放大的同时,图像的噪声也随之放大,尤其在550 nm波段最为明显。可以看出该方法不仅对光照比较均匀的550 nm波段灰度图像的清晰度无明显增强效果,而且还带来了较大的噪声。3基于非线性偏微分方程的图像增强为了避免直方图均衡化的同时放大噪声,本文采用一种改进的基于非线性偏微分方程的图像增强方法,设增强后的梯度图像为A:A=1-cosu-uminumax-umin?π?umax2?uu(3)其中,u为原图像的梯度函数,umax为梯度模的最大值,umin为梯度模的最小值,uu表示梯度场的方向信息。经过该变换之后梯度函数使原梯度场从[umin,umax]映射到[0,umax]内,且分布按照所需要求变换,使原本不明显的纹理凸显,同时保留梯度值较大边缘,增强图像的纹理细节。图像增强后再经过最小二乘原理恢复出所要增强的图像,该过程可以增强图像中比较弱的纹理和出现概率较低的细节信息。为了使增强效果完全体现出来,本文用直方图均衡化与原图像的差乘上补偿因子λ来调节增强后图像,从而构建出重建图像,公式如下:Δu=div(A)+λ(S(u)-u)(4)其中,Δ为拉普拉斯算子,Δu=?2u?x2+?2u?y2,S(u)是对原图像的直方图均衡化,λ为补偿因子。通过该方法对多光谱图像的增强效果与直接直方图均衡化处理产生的效果如图3所示(以图2中无明显增强效果的550nm和600nm波段图像为例)。 图3改进的方法与直方图均衡化处理对比图 Fig.3Contrast between images of improved method and histogram equalization processing
从图3可以看出该方法能够明显弥补直方图均衡化处理对某些波段图像增强无明显效果的不足,同时能够很好地抑制带噪图像在图像增强过程中所引起的噪声放大,从而克服了上述方法的缺陷,可以达到更好的视觉效果。4结果分析与讨论对实验结果的检验本文从定性和定量两方面着手。定性是从人眼视觉效果进行的评价,图1、图2、图3分别展示了在某些特征波段的原图像、直方图均衡化处理后的图像、改进的方法处理后的图像,从以上三组图像中可以看出改进的方法与直方图均衡化处理相比可以明显地提高图像的细节信息,从而增强图像的视觉质量。由于定性评价具有一定的主观性,因此,本文又引入了具有客观性的定量评价。因为,图像清晰度是衡量图像增强效果的重要指标,它的客观函数评价有很多,就反映图像细节信息的函数有:熵函数、灰度差分函数、Tenengrad函数、能量梯度函数以及点锐度函数等,在这里选用最适用于多光谱数字图像清晰度客观评价函数——灰度差分函数[11],来对实验的原始图像以及增强后的图像进行评价。灰度差分函数的算法是:先逐个算出各个像素点的平均灰度值,再将各像素点灰度值与平均灰度值之差累加,得到该图像的清晰度。公式如下:q(I)=∑x∑y[I(x,y)-μ](5) μ=∑x∑yI(x,y)(M×N)2(6)其中,I(x,y)为图像I在(x,y)处的灰度值,μ为图像I的平均灰度值,M×N为图像的像素总数,q(I)表示该函数的清晰度值。为了说明改进算法比直方图均衡化算法更具有优越性,本文选用比一般的多光谱成像系统有更高成像质量的LCTF成像系统,并且在D65光源下从450~720 nm波段(每隔5 nm,共55幅)采集一组多光谱数字图像进行清晰度分析。灰度差分函数对原图像、直方图均衡化处理后的图像、改进方法处理后的图像的清晰度值如图4所示。 图4各方法在不同波段的清晰度值分布 Fig.4The distribution of each method for images′ sharpness in different bands
通过图4三组波段图像清晰度的分布图可以看出,非线性偏微分方程图像增强能够很好地提高多光谱图像的清晰度,这为以后在多光谱图像的筛选和清晰度的视觉评价方面具有很大的帮助,然而又会导致多光谱数据立方体的能量分布的改变,因此,在多光谱图像的反射率重建等方面工作时将会进行后续的处理。5结论综合图1、图2、图3的定性评价和图4的定量评价可以看出多光谱图像在各波段成像质量是非常不均匀的,在550 nm左右的波段图像较为清晰,但在两端波段图像的清晰度相对较差,尤其是在470 nm以下和700 nm以上波段的图像非常不清晰,在此基础上如果采用直方图均衡化处理会使得较低波段和较高波段的图像清晰度得到明显的改善,然而随之而来会造成噪声的放大,结果导致在500~640 nm范围内被测的图像清晰度不升反降。而本文的方法不仅可以使几乎每个波段的图像清晰度获得提高,而且还可以使各个波段的清晰度基本维持在一条直线上,因此这种方法使得多光谱图像在各个波段图像质量得到了明显提高,克服了多光谱在不同波段成像不均匀这一缺点。实验结果表明:该方法不仅可以克服噪声较大时,直方图均衡化所带来的噪声同步放大的缺点,而且可使各波段图像清晰度值基本保持一致,有效地提高了不同波段多光谱灰度图像的清晰度,提高了图像的质量,为多光谱成像系统更多的应用研究提供了参考。参考文献: [1]周红志,冯莹莹,王戴木.基于Bayesian压缩感知的融合算法[J].计算机应用研究,2013,30(2):613?615. [2]郑芝寰,沈会良,杜昕.基于聚焦对称性的多光谱相机自动调焦方法[C]∥高光谱成像技术及其应用研讨会.苏州:中国宇航学会光电专委会,2012:92?97. [3]赵建.基于偏微分方程的非线性图像增强方法[J].仪器仪表学报,2011,32(6):358?362. [4]CASTLEMAN K R.数字图像处理[M].朱志刚,林学闫,石定机,等译.北京:电子工业出版社,2003:171?208. [5]朱立新,王平安,夏德深.基于梯度场均衡化的图像对比度增强[J].计算机辅助设计与图形学学报,2007,19(12):1546?1552. [6]韩希珍,赵建.结合偏微分方程增强图像纹理及对比度[J].光学精密工程,2012,20(6):1382?1388. [7]章毓晋.图像工程:图像处理[M].3版.北京:清华大学出版社,2012:259?263. [8]蔡明荣,马军山,王福红,等.自动调焦系统中图像清晰度判别方法的研究[J].光学仪器,2008,30(5):35?39. [9]姚铖,隋成华,魏高尧,等.自动验光仪中图像处理与调焦准确性的研究[J].光学仪器,2012,34(6):10?13. [10]陈亮,李卫军,谌琛,等.数字图像清晰度评价函数的通用评价能力研究[J].计算机工程与应用,2012,11(6):152?155. [11]LI H N,XU L L,FEN G J.Sharpness evaluation function of wavelength related multi?spectral image[C]∥IEEE 2013 2nd International Conference on Measurement,Information and Control,Harbin,2013:452?456.
|