当前位置: > 论文中心 > 科技论文 >

基于反射型全息光栅的温度响应特性研究(2)

时间:2014-08-11 15:43 点击:
图3均匀膨胀的全息光栅示意图 Fig.3Uniform thermal expansion of holographic gratings图4样品光栅的热膨胀示意图 Fig.4Thermal expansion of the samples 图5测量装置 Fig.5Measurement device其中,样品光栅的热

 

  图3均匀膨胀的全息光栅示意图

  Fig.3Uniform thermal expansion of

  holographic gratings图4样品光栅的热膨胀示意图

  Fig.4Thermal expansion of

  the samples

  

  图5测量装置

  Fig.5Measurement device其中,样品光栅的热膨胀仅存在与垂直玻璃的方向(Z轴),向量K为光栅向量,Δl为温度改变后,光敏聚合物膜的厚度变化大小。这种情况下,表面光栅常数w不随温度变化而变化,这意味着入射角与相应衍射角度的关系不会改变,而光栅条纹倾斜角以及光栅常数Λ随温度的改变,将导致布拉格衍射峰与最大衍射效率的改变。3实验测量本文所采用的测量装置由两个步进电机驱动的精密旋转台、一个光探测器(光功率计)以及温度控制模块组成,如图5所示。通过LabVIEW编程控制旋转台的转动以及探测器采样,实现对全息光栅衍射效率的自动测量。测量前,通过温度控制模块控制待测样品上的温度,并设置测量入射角度范围以及待测全息光栅的参数,包括类型、记录波长、记录角度等。测量时,系统会对全息图6温度控制模块

  Fig.6Temperature control block光栅的光栅常数进行预计算,并通过数次测量校准光栅常数。之后,系统根据所需测量的范围、步长,逐步对各个入射角度的衍射效率以及衍射角度进行测量,测量结果分组归类存储。该系统的功率测量误差为1%,测量角度误差为±0.1°。图6所示为温度控制模块,由Peltier元件、NTC温度传感器、温度控制系统以及冷却系统组成,可将全息光栅上的温度控制在0~80 ℃间的一个定值上,温度误差小于0.5 ℃。4结果与分析用图5所示的测量装置测量记录角度为0°及50°,记录波长为532 nm的样品光栅在22 ℃、40 ℃和60 ℃下的衍射特性。测量入射角度范围为-10°~80°,步长为0.5°,测量结果如图7所示。图7反射型全息光栅温度特性

  Fig.7The temperature dependence measurement

  result of the reflection holographic grating由图7可看出,被测光栅样品在22 ℃、40 ℃和60 ℃下,衍射效率与入射角的关系,曲线中缺失的部分是由测量装置的检测盲区导致的。在一定区域内,当被测衍射光束射向入射光束附近,由于探测器扫描挡住了入射光而致使被测衍射光效率为0,称该区域为检测盲区。图7中结果显示,反射型全息光栅的两个布拉格峰随温度的增加向两端扩张,并且衍射效率峰值降低。值得注意的是,在各个温度下所测得的衍射角度相同。根据光栅公式w(sinα+sinβ)=λ,衍射角β与入射角α间的关系与入射波长λ以及光栅常数w有关,而入射波长λ既定,为532 nm,这说明了温度变化时,表面光栅常数w固定不变。被测光栅样品的记录角度为0°及50°,记录波长为532 nm,制备温度为室温23 ℃,测量入射角范围为0°~80°,测量结果如图8所示。测量结果表明,测量时的温度相对制备温度的变化量越大,测得最大衍射效率下降越多。此外,被测光栅样品的布拉格衍射峰(以制备温度下测得的布拉格峰对应的入射角度为基准)随温度变化而平移,且平移的大小与温度变化量成线性关系。

  

  图8全息光栅衍射特性与温度关系

  Fig.8Measurements of the temperature influence on the diffraction

  characteristics of the holographic grating

 

  图9不同样品的温度影响测量

  Fig.9Measurement of the temperature

  influence on different samples对记录角为0°及10°、0°及50°、0°及70°的样品光栅分别在22 ℃、40 ℃和60 ℃下的衍射特性进行测量,不同样品光栅受温度变化影响而导致布拉格峰平移曲线如图9所示。图中曲线表明,不同制备条件的光栅样品受温度影响的程度不同,其中,记录角为0°及10°的样品光栅,受温度影响最大,0°及50°次之,0°及70°受影响最小,又因为Λ(0°/10°)<Λ (0°/50°)<Λ (0°/70°)所以,光栅条纹结构周期越小,其衍射特性受温度影响越大。5结论实验测量结果表明,当全息材料的热膨胀系数远大于基底(玻璃)的热膨胀系数时,对样品光栅热膨胀的推论是正确的,并且反射型全息光栅衍射特性受温度影响,以制备温度为基准,获得布拉格峰的入射角度偏移大小正比于温度的变化大小,最大衍射效率随温度变化量的增大而减小,并且光栅常数Λ越小,全息光栅衍射特性受温度变化的影响越大。全息光栅温度响应特性表明,其具有作为温度分析或者温度开关元件的潜质,它们对温度的敏感度取决于全息材料的热膨胀系数大小。参考文献:

  [1]杨明,刘守,张向苏,等.用国产全息材料制作假彩色反射全息图技术[J].厦门大学学报,2004,43(6):789?792.

  [2]徐向敏,章鹤龄,李展华,等.双波长非水溶性光致聚合物全息光栅的研究[J].应用光学,2009,30(5):823?826.

  [3]钱昌吉,蔡铁权.反射全息图再现波长的漂移与补偿[J].浙江师范大学学报,1996,19(2):44?48.

  [4]郭团,乔学光,贾振安,等.光纤光栅温度应变智能传感原理及增敏技术研究[J].物理学和高新技术,2003,32(3):176?181.

  [5]彭宗举,陈芬,周亚训,等.全息微光刻中全息掩模衍射特性的理论研究[J].光电子技术与信息,2004,17(6):67?71.

  [6]MOOTHANCHERY M,NAYDENOVA I,TOALV.Study of the shrinkage caused by holographic grating formation in arcylamide based photopolymer film[J].Optics Express,2011,19(14):13395?13404.

  [7]RAMOS G,?LVAREZ?HERRERO A,BELENGUER T,et al.Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording[J].Appl Opt,2004,43 (20):4018?4024.

  [8]KOGELNIK H.Coupled?wave theory for thick hologram gratings[J].Bell Syst Tech J,1969,48 (9):2909?2947.

  [9]KWON J H,HWANG H C,WOO K C.Analysis of temporal behaviour of beams diffracted by volume gratings formed in photopolymers[J].J Opt Soc Am B,1999,16(10):1651?1657.

 


   论文榜(www.zglwb.com),是一个专门从事期刊推广、投稿辅导的网站。
本站提供如何投稿辅导,寻求投稿辅导代理,快速投稿辅导,投稿辅导格式指导等解决方案:省级投稿辅导/国家级投稿辅导/核心期刊投稿辅导//职称投稿辅导。


栏目列表
联系方式
推荐内容
 
QQ在线咨询
投稿辅导热线:
189-6119-6312
微信号咨询:
18961196312